Search results

1 – 10 of over 25000
Article
Publication date: 6 January 2021

Navya Thirumaleshwar Hegde, V. I. George, C. Gurudas Nayak and Aldrin Claytus Vaz

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial…

Abstract

Purpose

This paper aims to provide a mathematical modeling and design of H-infinity controller for an autonomous vertical take-off and landing (VTOL) Quad Tiltrotor hybrid unmanned aerial vehicles (UAVs). The variation in the aerodynamics and model dynamics of these aerial vehicles due to its tilting rotors are the key issues and challenges, which attracts the attention of many researchers. They carry parametric uncertainties (such as non-linear friction force, backlash, etc.), which drives the designed controller based on the nominal model to instability or performance degradation. The controller needs to take these factors into consideration and still give good stability and performance. Hence, a robust H-infinity controller is proposed that can handle these uncertainties.

Design/methodology/approach

A unique VTOL Quad Tiltrotor hybrid UAV, which operates in three flight modes, is mathematically modeled using Newton–Euler equations of motion. The contribution of the model is its ability to combine high-speed level flight, VTOL and transition between these two phases. The transition involves the tilting of the proprotors from 90° to 0° and vice-versa in 15° intervals. A robust H-infinity control strategy is proposed, evaluated and analyzed through simulation to control the flight dynamics for different modes of operation.

Findings

The main contribution of this research is the mathematical modeling of three flight modes (vertical takeoff–forward, transition–cruise-back, transition-vertical landing) of operation by controlling the revolutions per minute and tilt angles, which are independent of each other. An autonomous flight control system using a robust H-infinity controller to stabilize the mode of transition is designed for the Quad Tiltrotor UAV in the presence of uncertainties, noise and disturbances using MATLAB/SIMULINK. This paper focused on improving the disturbance rejection properties of the proposed UAV by designing a robust H-infinity controller for position and orientation trajectory regulation in the presence of uncertainty. The simulation results show that the Tiltrotor achieves transition successfully with disturbances, noise and uncertainties being present.

Originality/value

A novel VTOL Quad Tiltrotor UAV mathematical model is developed with a special tilting rotor mechanism, which combines both aircraft and helicopter flight modes with the transition taking place in between phases using robust H-infinity controller for attitude, altitude and trajectory regulation in the presence of uncertainty.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 4 September 2019

Navya Thirumaleshwar Hegde, V.I. George, C. Gurudas Nayak and Kamlesh Kumar

The purpose of this paper is to give reviews on the platform modeling and design of a controller for autonomous vertical take-off and landing (VTOL) tilt rotor hybrid unmanned…

1251

Abstract

Purpose

The purpose of this paper is to give reviews on the platform modeling and design of a controller for autonomous vertical take-off and landing (VTOL) tilt rotor hybrid unmanned aerial vehicles (UAVs). Nowadays, UAVs have experienced remarkable progress and can be classified into two main types, i.e. fixed-wing UAVs and VTOL UAVs. The mathematical model of tilt rotor UAV is time variant, multivariable and non-linear in nature. Solving and understanding these plant models is very complex. Developing a control algorithm to improve the performance and stability of a UAV is a challenging task.

Design/methodology/approach

This paper gives a thorough description on modeling of VTOL tilt rotor UAV from first principle theory. The review of the design of both linear and non-linear control algorithms are explained in detail. The robust flight controller for the six degrees of freedom UAV has been designed using H-infinity optimization with loop shaping under external wind and aerodynamic disturbances.

Findings

This review will act as a basis for the future work on modeling and control of VTOL tilt rotor UAV by the researchers. The development of self-guided and fully autonomous UAVs would result in reducing the risk to human life. Civil applications include inspection of rescue teams, terrain, coasts, border patrol buildings, police and pipelines. The simulation results show that the controller achieves robust stability, good adaptability and robust performance.

Originality/value

The review articles on quadrotors/quadcopters, hybrid UAVs can be found in many literature, but there are comparatively a lesser amount of review articles on the detailed description of VTOL Tilt rotor UAV. In this paper modeling, platform design and control algorithms for the tilt rotor are presented. A robust H-infinity loop shaping controller in the presence of disturbances is designed for VTOL UAV.

Details

International Journal of Intelligent Unmanned Systems, vol. 8 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 April 1952

OUR readers do not need the reminder that 1952 is the 75th year of Library Association history. Some opportunity may be found at the Bournemouth Conference to celebrate this fact…

Abstract

OUR readers do not need the reminder that 1952 is the 75th year of Library Association history. Some opportunity may be found at the Bournemouth Conference to celebrate this fact, in however modest a manner. The American Library Association, older by a year, celebrated its anniversary at Philadelphia last October, on which occasion Mr. F. G. B. Hutchings represented this country and spoke at a luncheon meeting to three hundred of the guests with acceptance. That celebration, however, appears to us to have been most significant for the comment on the Carnegie library gifts which was made by Mr. Ralph Munn, librarian of Pittsburgh Carnegie Library, in some ways the most spectacular one founded by the great Scot. Munn said:—

Details

New Library World, vol. 53 no. 20
Type: Research Article
ISSN: 0307-4803

Article
Publication date: 1 April 1915

One of the indirect ways in which the condition of the people may be improved lies in the hands of librarians in arrangements that may be made for the use of the buildings at…

Abstract

One of the indirect ways in which the condition of the people may be improved lies in the hands of librarians in arrangements that may be made for the use of the buildings at their disposal. If the sale of alcohol is to be prohibited or curtailed, large numbers of our working classes will lose their meeting‐place or club, and while the public libraries, as at present constituted, are not in a position to fill the gap, a good deal might be done by way of providing for the possibility of foregathering, for a “feast of reason and a flow of soul,” without the sense of a stern authority always calling attention to the rules and regulations for silence and strict decorum. Really practical suggestions to this end would be of really valuable service now and indeed for all time.

Details

New Library World, vol. 17 no. 10
Type: Research Article
ISSN: 0307-4803

Article
Publication date: 1 September 1960

HAS the librarian responsibility for what is in the books he provides for the use of readers; if so, docs he, indeed can he, recognize it or do anything useful about it? We do not…

Abstract

HAS the librarian responsibility for what is in the books he provides for the use of readers; if so, docs he, indeed can he, recognize it or do anything useful about it? We do not mean, as the most important thing, his fear, reasonable or otherwise, of books which have too much sexuality. It is a major problem upon which no authoritative statement for our guidance has ever been made except perhaps the police inhibitions and the Roman Catholic indexes in the subject just mentioned. That we can dispose of in the favourite saying of Stanley Jast “The Bovril of today is the Mellin's Food of tomorrow”, and refer to the general shift of public opinion towards toleration, or a more easy regard for sex in literature. To deny sex is to deny life. The problem is one that does not affect any but public adult libraries, where the reader need not read any book which offends his code but is not privileged to interfere with the choice of others who alone can be responsible for their own reading. Thus the argument goes, but public men are concerned for the unlettered reader who chooses a book in innocence. These can cause much trouble. One of the annual reports before us puts another difficult angle of the question: the readers who invariably demand these books at the public expense and question the librarian's assumption that he can refuse to purchase them. The schoolgirl is also a great concern to many: she is likely to know as much, if she is damaged by any book, as does her gratuitous protector. It would have been unthinkable twenty years ago for a national newspaper to publish the substance of a recent teacher's assertion that after an address on the facts of life to a form of senior girls, one of the girls told her it was interesting but had come too late: all the girls in her form had experienced sex and “would be thought odd if they had not.” This seems an extreme case but it has a definite warning that the trouble does not originate in the library.

Details

New Library World, vol. 62 no. 3
Type: Research Article
ISSN: 0307-4803

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 May 1961

The news that the Ministry of Education has set up two Working Parties in connection with the proposed new Public Libraries Bill is welcome and gives further hope that such a Bill…

Abstract

The news that the Ministry of Education has set up two Working Parties in connection with the proposed new Public Libraries Bill is welcome and gives further hope that such a Bill will appear in the not too distant future. From the constitutions of these Working Parties, which seem to us to be fairly representative of all interests, it would appear that the first is going to concern itself with the main aspects of the Roberts Report recommendations, while the second will be given the task of studying the problems of library co‐operation. On the first party, county libraries are represented by Miss Paulin and Mr. Budge, while Wales is represented by Mr. A. Edwards, librarian of the Cardiganshire and Aberystwyth Joint Library. Mr. D. I. Colley, the city librarian of Manchester, will be keeping a watching brief on behalf of the large libraries, but it should not be forgotten that he is also a member of the Libraries Committee of the Association of Municipal Corporations. Mr. Gardner is rightly there, perhaps not only as librarian of Luton but also as chairman of the Library Association's Executive Committee. The Smaller Libraries Group can surely have no complaints, for out of the ten members of Working Party No. I there are three librarians from smaller libraries, these being Mr. Helliwell of Winchester, Mr. Christopher of Penge and Mr. Parker of Ilkley. This Working Party is completed by two legal representatives in Mr. W. B. Murgatroyd, who is Town Clerk of Hornsey, and Mr. J. H. Oldham, who is Assistant County Solicitor for Kent.

Details

New Library World, vol. 62 no. 11
Type: Research Article
ISSN: 0307-4803

Article
Publication date: 25 August 2020

Jafar Tavoosi

In this paper, an innovative hybrid intelligent position control method for vertical take-off and landing (VTOL) tiltrotor unmanned aerial vehicle (UAV) is proposed. So the more…

Abstract

Purpose

In this paper, an innovative hybrid intelligent position control method for vertical take-off and landing (VTOL) tiltrotor unmanned aerial vehicle (UAV) is proposed. So the more accurate the reference position signals tracking, the proposed control system will be better.

Design/methodology/approach

In the proposed method, for the vertical flight mode, first the model reference adaptive controller (MRAC) operates and for the horizontal flight, the model predictive control (MPC) will operate. Since the linear model is used for both of these controllers and naturally has an error compared to the real nonlinear model, a neural network is used to compensate for them. So the main novelties of this paper are a new hybrid control design (MRAC & MPC) and a neural network-based compensator for tiltrotor UAV.

Findings

The proper performance of the proposed control method in the simulation results is clear. Also the results showed that the role of compensator is very important and necessary, especially in extreme speed wind conditions and uncertain parameters.

Originality/value

Novel hybrid control method. 10;-New method to use neural network as compensator in an UAV.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 4 November 2021

Vinoth Kumar Annamalai and Selvakumaran Thunaipragasam

The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral…

Abstract

Purpose

The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral Derivative (PID) controller to stabilize the altitude and attitude of the UAV subjected to various flying conditions.

Design/methodology/approach

First, the proposed UAV with a tilting mechanism is designed and analyzed to obtain the aerodynamic parameters. Second, the dynamics of the proposed UAV are mathematically modeled using Newton-Euler formation. Then, the PID controller is implemented in the simulation model to control flight maneuvers. The model parameters were implemented in a mathematical model to find the system’s stability for various flight conditions. The model was linearized to determine the PID gain values for vertical take-off and landing, cruise and transition mode. The PID controller was tuned to obtain the desired altitude and attitude in a short period. The tuned PID gain values were implemented in the PID controller and the model was simulated.

Findings

The main contribution of this study is the mathematical model and controller for a UAV without any control surface and uses only a thrust vector control mechanism which reduces the complexity of the controller. The simulation has been carried out for various flight conditions. The altitude PID controller and the attitude PID controller for CSL-TTR-UAV were tuned to obtain desired altitude and attitude within the optimum duration of 4 s and deviation in the attitude of 8%, which is within the allowable limit of 14%. The findings obtained from the simulation revels that the altitude and attitude control of the CSL-TTR-UAV was achieved by controlling the rpm of the rotor and tilt angle using the PID controller.

Originality/value

A novel CSL TTR UAV mathematical model is developed with a dual tilting mechanism for a tail rotor and single axis tilt for the rotors in the wing. The flight control model controls the UAV without a control surface using a PID controller for the thrust vector mechanism.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 25000